深度优先搜索算法和广度优先搜索算法都是基于“图”这种数据结构的。
图的代码:
1 | public class Graph { // 无向图 |
广度优先搜索(BFS - Breadth First Search)
是一种“地毯式”层层推进的搜索策略,即先查找离起始顶点最近的,然后是次近的,依次往外搜索。s 表示起始顶点,t 表示终止顶点。
1.visited 是用来记录已经被访问的顶点,用来避免顶点被重复访问。如果顶点 q 被访问,那相应的 visited[q]会被设置为 true。
2.queue 是一个队列,用来存储已经被访问、但相连的顶点还没有被访问的顶点。
3.prev 用来记录搜索路径。
1 | public void bfs(int s, int t) { |
4出队的时候,visited[6]应该为0,图画错了
最坏情况下,终止顶点 t 离起始顶点 s 很远,需要遍历完整个图才能找到。这个时候,每个顶点都要进出一遍队列,每个边也都会被访问一次,所以,广度优先搜索的时间复杂度是 O(V+E),其中,V 表示顶点的个数,E 表示边的个数。当然,对于一个连通图来说,也就是说一个图中的所有顶点都是连通的,E 肯定要大于等于 V-1,所以,广度优先搜索的时间复杂度也可以简写为 O(E)。
树的特性是E = V - 1,树是边最少的联通图,因此一般而言E >= V -1
广度优先搜索的空间消耗主要在几个辅助变量 visited 数组、queue 队列、prev 数组上。这三个存储空间的大小都不会超过顶点的个数,所以空间复杂度是 O(V)。
深度优先搜索(DFS)
直观的例子就是“走迷宫”。假设你站在迷宫的某个岔路口,然后想找到出口。你随意选择一个岔路口来走,走着走着发现走不通的时候,你就回退到上一个岔路口,重新选择一条路继续走,直到最终找到出口。这种走法就是一种深度优先搜索策略。
1.visited 是用来记录已经被访问的顶点,用来避免顶点被重复访问。如果顶点 q 被访问,那相应的 visited[q]会被设置为 true。
2.prev 用来记录搜索路径。
1 | boolean found = false; // 全局变量或者类成员变量 |
每条边最多会被访问两次,一次是遍历,一次是回退。所以,图上的深度优先搜索算法的时间复杂度是 O(E),E 表示边的个数。
深度优先搜索算法的消耗内存主要是 visited、prev 数组和递归调用栈。visited、prev 数组的大小跟顶点的个数 V 成正比,递归调用栈的最大深度不会超过顶点的个数,所以总的空间复杂度就是 O(V)。
广度优先搜索,通俗的理解就是,地毯式层层推进,从起始顶点开始,依次往外遍历。广度优先搜索需要借助队列来实现,遍历得到的路径就是,起始顶点到终止顶点的最短路径。深度优先搜索用的是回溯思想,非常适合用递归实现。换种说法,深度优先搜索是借助栈来实现的。在执行效率方面,深度优先和广度优先搜索的时间复杂度都是 O(E),空间复杂度是 O(V)。